2 Principle of Mathematical Induction

Let we want to show that property P holds for all natural numbers. To prove this property, P using mathematical induction, following are the steps: Basic Step: First show that property P is true for 0 or 1. Induction Hypothesis: Assume that property P holds for n. Induction step: Using induction hypothesis, show that P is true for n+1. Then by the principle of mathematical induction, P is true for all natural numbers.

Examples

Example 1

Prove using mathematical induction, n^4 - $4n^2$ is divisible by 3 for n>=0.

Basic step:

For n=0,

 n^4 - $4n^2 = 0$, which is divisible by 3.

Induction hypothesis:

Let $n^4 - 4n^2$ is divisible by 3.

Induction step:

$$(n+1)^{4} - 4(n+1)^{2} = [(n+1)^{2}]^{2} - 4(n+1)^{2}$$

$$= (n^{2} + 2n + 1)^{2} - (2n+2)^{2}$$

$$= (n^{2} + 2n + 1 + 2n + 2)(n^{2} + 2n + 1 - 2n - 2)$$

$$= (n^{2} + 4n + 3)(n^{2} - 1)$$

$$= n^{4} + 4n^{3} + 3n^{2} - 3 - 4n - n^{2} = n^{4} + 4n^{3} + 2n^{2} - 4n - 3$$

$$= n^{4} + 4n^{3} - 4n^{2} + 6n^{2} - 4n - 3$$

$$= n^{4} - 4n^{2} + 6n^{2} - 3 + 4n^{3} - 4n$$

$$= (n^{4} - 4n^{2}) + (6n^{2}) - (3) + 4(n^{3} - n)$$

 $(n^{4}-4n^{2})$ is divisible by 3 from our hypothesis. 6n² and 3 are divisible by 3. We need to prove that $4(n^{3} - n)$ is divisible by 3.

Again use mathematical induction.

Basic step: For n = 0, 4(0-0) = 0 is divisible by 3. Induction hypothesis: Let $4(n^3 - n)$ is divisible by 3. Induction step: $4[(n + 1)^3 - (n + 1)] = 4[(n^3 + 3n^2 + 3n + 1) - (n + 1)]$ $= 4[n^3 + 3n^2 + 3n + 1 - n - 1]$

$$= 4[n^{3} + 3n^{2} + 2n]$$

= 4[n³ - n + 3n² + 3n]
= 4(n³ - n) + 4.3n² + 4.3n
4(n³ - n) is divisible by 3 from our hypothesis.
4.3n² is divisible by 3.
4.3n is divisible by 3.
Thus we can say that
(n² - 4n²) + (6n²) - (3) + 4(n³ - n) is divisible by 3.
That is,
n⁴ - 4n² is divisible by 3.

Example 2:

Prove using mathematical induction: $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$ Let $P\{n\} = 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$ Basic Step: For n=1, LHS =1 RHS = $\frac{1(1+1)}{2}$ =1 Induction hypothesis; Assume that P(n) is true for n=k, Then, $1 + 2 + 3 + ... + k = \frac{k(k+1)}{2}$

Induction step: Show that P(n) is true for n=k+1. $1 + 2 + 3 + ... + k + (k+1) = \frac{k(k+1)}{2} + k + 1$ $= (k + 1) \left(\frac{k}{2} + 1\right)$ $= (k + 1) \left[\frac{k+2}{2}\right]$ $= \frac{[(k+1)(k+2)]}{2}$

That is, P(n) is true for n=k+1.

Thus by using the principle of mathematical induction, we proved $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$

Example 3: Prove using the principle of mathematical induction, $\Sigma_{i=0}^{n} n^{2} = \frac{n(n+1)(2n+1)}{6}$ Let P(n)= $\Sigma_{i=0}^{n} n^{2} = \frac{n(n+1)(2n+1)}{6}$ Basic step:

For n=1,

LHS 1²=1 RHS = $\frac{n(n+1)(2n+1)}{6} = \frac{1.2.3}{6} = 1$ P(n) is true for n=1.

Induction hypothesis: Assume that result is true for n=k. That is, $1^{2} + 2^{2} + \ldots + k^{2} = \frac{k(k+1)(2k+1)}{6}$

Induction Step:
Prove that result is true for n=k+1.

$$1^2 + 2^2 + ... + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2$$

 $= (k+1) \left[\left(\frac{k(2k+1)}{6} \right) + (k+1) \right]$
 $= \frac{(k+1)(2k^2+k+6k+6)}{6}$
 $= \frac{(k+1)(2k(k+2)+3(k+2))}{6}$
 $= \frac{(k+1)(k+2)(2k+3)}{6}$

Thus it is proved.

Exercise Problems:

1. Prove the following by principle of induction:

•
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$\sum_{i=1}^{n} \frac{1}{1} = \frac{n}{1}$$

- $\Delta_{i=1} \frac{1}{i(i+1)} = \frac{1}{n+1}$
- 2i>l for all i>1.
- 2^x ≥ x², if x≥4
 10²ⁿ -1 is divisible by 11 for all n>1
- 2ⁿ>n, for all n>1